Thus, medium divides a triangle into two equal halves.
Similarly, Ar(ΔBGF)=Ar(ΔAGF)...(i)Ar(ΔAGE)=Ar(ΔGEC)...(ii)andAr(ΔBGH)=Ar(ΔGHC)..(iii)Now,Ar(ΔABH)=Ar(ΔAHC)⇒Ar(ΔBGF)+Ar(ΔBGH)+Ar(ΔAGF)=Ar(ΔAGE)+Ar(ΔGEC)+Ar(ΔGHC)⇒2Ar(ΔAGF)=2Ar(ΔAGE)[From (i), (ii) and (iii)] ⇒Ar(ΔAGF)=Ar(ΔAGE)…(iv)Also,Ar(ΔABE)=Ar(ΔBEC)⇒Ar(ΔBGF)+Ar(ΔAGF)+Ar(ΔAGE)=Ar(ΔBGH)+Ar(ΔGHC)+Ar(ΔGEC)⇒2Ar(ΔBGF)=2Ar(ΔBGH)⇒Ar(ΔBGF)=Ar(ΔBGH)..(v)From (i), (ii), (iii), (iv) and (v), we getAr(ΔDGF)=Ar(ΔAGF)=Ar(ΔAGE)=Ar(ΔGEC)=Ar(ΔGHC)=Ar(ΔBGH)Thus,Ar(ΔGBC)=2Ar(ΔBGH)=2Ar(ΔAFG) [From (iii)] =Ar(ΔAFG)+Ar(ΔAGE)[From (iv)] =Ar(AFGE)=36cm2