The medians of a right triangle which are drawn from the vertices of the acute angles are 5 and √40. The value of the hypotenuse is:
The correct option is C (2√13)
From the given information it follows that for the right triangle ABC, we have
[a2]2+b2=25and a2+[b2]2=40.
a2+4b24=25 and 4a2+b24=40
a2+4b2=100 and....(i) and 4a2+b2=160...(ii)
Substitute value of a2 of equation(i) in equation(ii), we get
4(100−4b2)+b2=160
400−16b2+b2=160
15b2=400−160
b2=24015
∴b2=16
Substitute b2 in equation(i), we get
a2+4(16)=100
a2+64=100
a2=100−64
∴a2=36 and b2=16.
Thus, c2=a2+b2
c2=36+16;
c2=52
c=√52
∴c=2√13