Equation of normal at any point P(x,y) is dydx(Y−y)+(X−x)=0
This meets the x-axis at A(x+ydydx,0)
Mid point of AP is (x+12ydydx,y2) which lies on the parabola 4y2=x
∴4×y24=x+12ydydx
⇒y2=x+12ydydx
⇒4y2=4x+2ydydx
Putting y2=t, so that 2ydydx=dtdx
∴4t=4x+dtdx
⇒dtdx−4t=−4x
I.F. =e−4∫dx=e−4x
Therefore, the curve is given by
t.e−4x=−4∫xe−4xdx
t.e−4x=−4[−14xe−4x−∫−14e−4xdx]+c
⇒y2.e−4x=xe−4x+14e−4x+c
Curve passes through (0,0)
⇒0=0+14+c⇒c=−14
⇒−4c=1