Consider a ΔABC with A(x1,y1),B(x2,y2)andC(x3,y3). If L(1,4),M(4,8)andN(5,6) are the mid points of AB,BCandCA respectively.
Then,
1=x1+x22⇒x1+x2=2......(1)
4=y1+y22⇒y1+y2=8......(2)
4=x2+x32⇒x2+x3=8......(3)
8=y2+y32⇒y2+y3=16.......(4)
5=x3+x12⇒x3+x1=10......(5)
6=y3+y12⇒y3+y1=12......(6)
On adding (1),(3) and (5) to, we get
2(x1+x2+x3)=2+8+10
x1+x2+x3=10......(7)
On adding (2),(4) and (6) to, we get
2(y1+y2+y3)=8+16+12
y1+y2+y3=18......(8)
From (1) and (7) to⇒ x3=8
From (3) and (7) to⇒ x1=2
From (5) and (7) to⇒ x2=0
Now,
From (2) and (8) to⇒ y3=10
From (4) and (8) to⇒ y1=2
From (6) and (8) to⇒ y2=6
Hence the point A(2,2),B(0,6)andC(8,10).