Let,
ABC be a triangle with vertices
A(x1,y1),B(x2,y2),C(x3,y3) and
P(1,4),Q(4,8),R(5,6) be the midpoints of
AB,BC,CA respectively.
Then,
1=x1+x22⇒x1+x2=2⟶(1)4=y1+y22⇒y1+y2=8⟶(2)4=x2+x32⇒x2+x3=8⟶(3)8=y2+y32⇒y2+y3=16⟶(4)5=x3+x12⇒x3+x1=10⟶(5)6=y3+y12⇒y3+y1=12⟶(6)
Adding equations (1),(3) and (5) we get,
2(x1+x2+x3)=20⇒x1+x2+x3=10⟶(7)
Subtracting equation (7) from (1) ⇒x3=8
Subtracting equation (7) from (3) ⇒x1=2
Subtracting equation (7) from (5) ⇒x2=0
Now, adding equations (2),(4) and (6) we get,
2(y1+y2+y3)=36⇒y1+y2+y3=18⟶(8)
Subtracting equation (8) from (2) ⇒y3=10
Subtracting equation (8) from (4) ⇒y1=2
Subtracting equation (8) from (6) ⇒y2=6
∴ the required coordinates of the vertices of the triangle are
A=(2,2)B=(0,6)C=(8,10).