Let A(x1,y1),B(x2,y2),C(x3,y3) be the vertices of △ABC
We have D is the midpoint of AB⇒(3,4)=(x1+x22,y1+y22)
⇒x1+x2=6 ........(1)
and y1+y2=8 ........(2)
E is the midpoint of BC⇒(8,9)=(x2+x32,y2+y32)
⇒x2+x3=16 ........(3)
and y2+y3=18 ........(4)
F is the midpoint of AC⇒(6,7)=(x1+x32,y1+y32)
⇒x1+x3=12 ........(5)
and y1+y3=14 ........(6)
Equation (1)−(3) we get
x1+x2−x2−x3=6−16
⇒x1−x3=−10 .......(7)
Equation (5)+(7) we get
x1+x3+x1−x3=12−10=2
⇒2x1=2 or x1=1
Substituting the value of x1=1 in eqn(1) we get
x1+x2=6 or x2=6−1=5
Substituting the value of x1=1 in eqn(5) we get
x1+x3=12 or x3=12−1=11
Equation (2)−(4) we get
y1+y2−y2−y3=8−18
⇒y1−y3=−10 .......(8)
Add equations (8) and (6) we get
y1−y3+y1+y3=−10+14
⇒y1=2
From (2)y1+y2=8 or y2=8−2=6
From (4)y1+y3=18 or y3=18−2=16
∴ the co-ordinates of vertices of △ABC is A(1,2),(5,6),C(11,16)