wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

The mid-points of the sides of a triangle ABC along with any of the vertices as the fourth point make a parallelogram of area equal to

(a) ar (ΔABC)

(b) 12ar (ΔABC)

(c) 13ar (ΔABC)

(d) 14ar (ΔABC)

Open in App
Solution

Given: (1) ABCD is a triangle.

(2) mid points of the sides of ΔABC with any of the vertices forms a parallelogram.

To find: Area of the parallelogram

Calculation: We know that: Area of a parallelogram = base × height

Hence area of ||gm DECF = EC × EG

area of ||gm DECF = EC × EG

area of ||gm DECF = (E is the midpoint of BC)

area of ||gm DECF =

area of ||gm DECF =

Hence the result is option (b).


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Length of Arc and Angle at the center
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon