The minimum area bounded by the function y=f(x) and y=αx+9 (αϵR) where f satisfies the relation f(x+y)=f(x)+f(y)+y√f(x) ∀ x,yϵR and f′(0)=0 & f(0)=0 is 9A, value of A is
f′(x)=limh→0f(x+h)−f(x+0)h=limh→0f(x)+f(h)+h√f(x)−f(x)−f(0)−0√f(x)h
=limh→0(f(h)−f(0)h−0)+√f(x)
=limh→0(f′(h)1)+√f(x)
⇒f′(x)=√f(x)
∫f′(x)√f(x)dx=∫dx
2√f(x)=x+c
f(x)=x24
when α=0 area is minimum
required minimum area = 2∫902√ydy
⇒4(y3232)90 = 72 sq.unit