The minimum & maximum value of f(x)=sin(cosx)+cos(sinx)∀−π2≤x≤π2 are respective
f′(x)=cos(cosx)(−sinx)+−sin(sinx)cosxasf′(x)=0−cos(cosx)sinx=sin(sinx)cosxatx=−(π2),0,(π2)nowf(π2)=sin(cos−(π2))+cos(sin(π2))=cos1f(0)=sin(cos0)+cos(sin0)=sin1+1f(π2)=sin(cos(π2))+cos(sin(π2))=cos1maxvalue=1+sin1andminvalue=cos1