The correct option is A a+b
lf r is the radius vector, s=r2=x2+y2 is the square root= the radlus vector. As (x,y) lles on
a2x2+b2y2=1
s=x2+b2x2x2−a2=x2+b2+a2b2x2−a2
∴ dsdx=2x−2xa2b2(x2−a2)2=2x{1−a2b2(×2−a2]2}
∴ d2sdx2=2{1−a2b2(x2−a2)2}+a2b2x(x2−a2)3
dsdx=0⇒(x2−a2)2=a2b2⇒x2=a2+ab
Then d2sdx2>0 ∴ s ls minimum when xz=a2+ ab
∴ minimum radius vector =√(a2+ab)+b2(a2+ab)ab
=√(a+b)2=a+b