The correct option is B 8
f(x)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩1−x−(3+x)+5−x=3−3xx≤−31−x+3+x+5−x=9−x,−3<x<1x−1+3+x+5−x=7+x1≤x<5x−1+3+x+x−5=3x−3x≥5
f′(x)<0 in (−∞,−3) and (−3,1) and
f′(x)>0in[1,5) and [5,∞)
∴f′(x) is decreasing in [−∞,1) and increasing in [1,∞).
So the minimum value in [−∞,1) is f(1)=7+1=8.