The correct option is B 21−1√2
Let 2sinx,2cosx be the two positive numbers.
Then, using A.M. ≥ G.M., we have
2sinx+2cosx2≥√2sinx⋅2cosx
2sinx+2cosx≥2⋅√2sinx+cosx ⋯(1)
Now, 2sinx+cosx=2√2cos(π4−x)
we know that cosx∈[−1,1]
⇒2√2cos(π4−x)≥2−√2
From (1), we have
2sinx+2cosx≥2⋅2−√22
∴2sinx+2cosx≥21−1√2
Hence, the minimum value of 2sinx+2cosx is 21−1√2.