We have,
cos3x+cos3(120−x)+cos3(120+x)
Now, Using
cos3x=4cos3x−3cosx
cos3x=cos3x+3cosx4
Such that,
cos3x+3cosx4+cos(360−3x)+3cos(120−x)4+cos(360+3x)+3cos(120+x)4
=14[cos3x+3cosx+cos(360−3x)+3cos(120−x)+cos(360+3x)+3cos(120+x)]
=34[cos3x+cosx+cos(120−x)+cos(120+x)]
=34[2cos2xcosx+2cos120cosx]
=34[2cos2xcosx+2(−12)cosx]
=34[cos3+cosx−cosx]
=34cos3x
Minimum value of cos3x=−1
So, minimum value of cos3x+cos3(120−x)+cos3(120+x)=34×−1=−34
Hence, this is the answer.