wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The minimum value of cos3x+cos3(120+x)+cos3(120x)is

Open in App
Solution

We have,

cos3x+cos3(120x)+cos3(120+x)

Now, Using

cos3x=4cos3x3cosx

cos3x=cos3x+3cosx4

Such that,

cos3x+3cosx4+cos(3603x)+3cos(120x)4+cos(360+3x)+3cos(120+x)4

=14[cos3x+3cosx+cos(3603x)+3cos(120x)+cos(360+3x)+3cos(120+x)]

=34[cos3x+cosx+cos(120x)+cos(120+x)]

=34[2cos2xcosx+2cos120cosx]

=34[2cos2xcosx+2(12)cosx]

=34[cos3+cosxcosx]

=34cos3x

Minimum value of cos3x=1

So, minimum value of cos3x+cos3(120x)+cos3(120+x)=34×1=34

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon