The minimum value of cosθ+sinθ is
[MNR 1976; Pb. CET 1996]
0
1/2
Let f(x) = cosθ+sinθ = √2cos(θ−π4)
Since −1≤cos(θ−π4)≤1
⇒ −√2≤cos(θ−π4)≤√2
Thus, the minimum value of f(x) is −√2.