The minimum value of f(x)=sin4x+cos4x,0≤x≤π2 is
f(x)=sin4x+cos4x=(sin2x+cos2)2−2sin2xcos2x⇒f(x)=1−12sin22x ∵0≤sin22x≤1⇒0≤2−2f(x)≤1⇒−2≤−2f(x)≤−1⇒12≤f(x)≤1∴Minimum value of f(x) is12