The correct option is B 223.312
XY+√YZ+3√ZX
Consider six positive real numbers XY,12√YZ,12√YZ,133√zx,133√zx
⇒XY+12√YZ+12√YZ+133√zx+133√zx6≥6√XY×12√YZ×12√YZ×133√zx×133√zx
⇒XY+√YZ+3√zz≥6×6√XY×YZ×ZX×12×2×3×3×3
⇒XY+√YZ+3√zz≥66√22×33
≥2×3213×312
≥223×312
Hence, the correct answer is option (2).