Let f(x)=(sin(sin−1x))2−6sin(sin−1x)+10(3(sin4x+cos4x)−2(sin6x+cos6x))
Domain of f(x) is [−1,1]
Now,
3(sin4x+cos4x)−2(sin6x+cos6x)
⇒3(sin4x+cos4x)−2((sin2x+cos2x)(sin4+cos4−sin2xcos2x))
⇒sin4+cos4+2sin2xcos2x
⇒(sin2x+cos2x)2=1
and sin(sin−1x)=x ∀ x∈[−1,1]
∴f(x)=x2−6x+10=(x−3)2+1
⇒5≤f(x)≤17 (∵x∈[−1,1])
∴ Minimum value of f(x) is 5.