The minimum value of f(x)=aax+a1-axwhere a, x∈R and a>0, is equal to
a+1a
a+1
2a
Find the minimum value of the given function
Given : f(x)=aax+a1-ax
Using A.M.≥G.M. inequality,
aax+aaax2≥aax.aaax12⇒aax+aaax≥2a⇒aax+a1-ax≥2a
Therefore the minimum value of f(x)=aax+a1-axis 2a.
Hence option D is the correct option.