The correct option is B is 151
∑4n2(2n−1)2=4n(n+1)(2n+1)/6∑(4n2+1−4n)4n(n+1)(2n+1)/64n(n+1)(2n+1)6+6n6−12n(n+1)6<1.014(n+1)(2n+1)4(n+1)(2n+1)+6−12(n+1)<1.014(n+1)(2n+1)(n+1)(8n+4−12)+6<1.014(n+1)(2n+1)(8n2−8+6)<1.014(n+1)(2n+1)2(2n−1)(2n+1)<1.012(n+1)(2n−1)<1.012n+2<20.2n−1.013.01<0.02n150.5<nn=151