The minimum value of tanBtanC in an acute angled triangle ABC is
A
tanA2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cotA2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
cosec2A2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cot2A2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dcot2A2 tan(B+C)=tanB+tanC1−tanBtanC=−tanA ∴tanA=tanB+tanCtanBtanC−1≥2√tanBtanCtanBtanC−1 If x=tanBtanC x−1≥2√xcotAorx−2√xcotA≥1 Add cot2A to both sides (√x−cotA)2≥cosec2A ∴√x≥cotA+cosecA=1+cosAsinA=cotA2∴x≥cot2A2