Geometrical Representation of Argument and Modulus
The minimum v...
Question
The minimum value of the expression E=|z|2+|z−3|2+|z−6i|2 is m, then the value of m5 is _____.
Open in App
Solution
E=|z|2+|z−3|2+|z−6i|2 Substitute z=r(cosA+sinA) E=r2+(rcosA−3)2+r2sin2A+r2+(rsinA−6)2=3r2+44−6r(cosA+2sinA) Since, maximum value of acosA+bsinA is √a2+b2 Therefore, E≥3r2+44−6√5r=3(r−√5)2+30≥30 Thus, m=30 ⇒m5=6 Ans: 6