The correct option is A √22
Given, f(x)=1sinx+cosx
On differentiating w.r.t, x, we get
f′(x)=−1(sinx+cosx)2[cosx−sinx]
For minimum, put f′(x)=0
Therefore, cosx−sinx=0
⇒tanx=1\
⇒x=π4
⇒x=π4,f′(x)>0, minima
Thus minimum value is
f(π4)=1sinπ4+cosπ4=11√2+1√2
=12/√2=√22