The minimum value of x satisfying the given inequality log10(5⋅4x−1+2x−20)≥(1−x)(log10(2.5)−1) is
Open in App
Solution
log10(5⋅4x−1+2x−20)≥(1−x)(log10(2.5)−1)⇒log10(5⋅4x−1+2x−20)≥(1−x)(log102.5−log1010)⇒log10(5⋅4x−1+2x−20)≥(1−x)log10(14)⇒log10(5⋅4x−1+2x−20)≥log104x−1⇒5⋅4x−1+2x−20≥4x−1⇒4⋅4x−1+2x−20≥0⇒4x+2x−20≥0 ∴ Minimum value of x=2.