The minimum value of |x|+x+12+x-3+x-52 is
0
2
4
6
Find the minimum value of the given expression
Given :f(x)=|x|+x+12+x-3+x-52
For, x<-12,
f(x)=-x+(-x-12)+(-x+3)+-x+52⇒f(x)=-4x+5
For, -12≤x<0,
f(x)=-x+x+12+3-x+52-x⇒f(x)=6-2x
For, 0≤x<52,
f(x)=x+x+12+3-x+52-x⇒f(x)=6
For, 52≤x≤3
f(x)=2x+1
Now plot the graph,
From the graph, the function have the minimum value of 6.
Hence, option D is the correct answer.
Let [k] denotes the greatest integer less than or equal to k. Then the number of positive integral solutions of the equation [x[π2]]=⎡⎢ ⎢⎣x[1112]⎤⎥ ⎥⎦ is