The correct option is C 3x−4y+16=0
For the parabola y2=4(x+1) vertex will be (−1,0) and focus will be (0,0).
Therefore directrix of the parabola will be x=−2
Any point on x=−2 is (−2,k)
Now, mirror image (x,y) of (−2,k) in the line x+2y=3 is given by
x+21=y−k2=−2(−2+2k−35)⇒x=10−4k5−2⇒x=−4k5⋯(1)Also,y=20−3k5⋯(2)
From (1) and (2) we get,
y=4+35(5x4)
∴4y=16+3x is the equation of the mirror image of the directrix.