λ∘X−≈λ∘Y−
⇒λ∘H++λ∘X−≈λ∘H++λ∘Y−⇒λ∘HX≈λ∘HY……(1)
Also λmλ∘m= α, So λm(HX)=λ∘mα1 and λm(HY)=λ∘mα2
Now,
λm(HY)=10λm(HX)
⇒λ∘mα2=10×λ∘mα1
α2=10α1……(2)
Ka=Cα21−α, but α<<1, therefore Ka=Cα2
⇒Ka(HX)Ka(HY)=0.01α210.1α22=0.010.1×(110)2=11000.
⇒log(Ka(HX))−log(Ka(HY))=−3
⇒pKa(HX)−pKa(HY)=3