The moment of inertia of a uniform circular disc of radius and mass about an axis passing from the edge of the disc and normal to the disc is
Step 1: Given data
Step 2: Theorem used
Parallel axis theorem- The moment of inertia of a body about an axis parallel to the axis passing through the center of it is equal to the sum of the moment of inertia of the body through the center and the product of the mass of the body and the square of the distance between them.
'
Where is the moment of inertia through any axis passing through the center of the body and is the moment of inertia of an axis parallel to , is mass of the body, and is the distance between these two axes
Step 3: Calculation
By parallel axis theorem, the moment of inertia along ,
Thus, the moment of inertia of a uniform circular disc of radius and mass about an axis passing from the edge of the disc and normal to the disc is .