The correct option is B nπ+π4
2sinx+2cosx=21−1√2
Since, AM≥GM
2sinx+2cosx2≥√2sinx+cosx
⇒2sinx+2cosx≥2√(2sinx+cosx) ....(1)
We know that −√1+1≤sinx+cosx≤√1+1
⇒−√2≤sinx+cosx≤√2
So, minimum value of sinx+cosx is −√2
So, by (1),
2sinx+2cosx≥2(√2−√2)=21−1/√2
The equation holds when equality holds
2sinx=2cosx
⇒sinx=cosx
⇒tanx=1
⇒x=nπ+π4