The most general value of θ satisfying 3−2cosθ−4sinθ−cos2θ+sin2θ=0:
3−2cosθ−4sinθ−cos2θ+sin2θ=0
⇒3−2cosθ−4sinθ−1+2sin2θ+2sinθcosθ=0
⇒2sin2θ−2cosθ−4sinθ+2sinθcosθ+2=0
⇒(sin2θ−2sinθ+1)+cosθ(sinθ−1)=0
⇒(sinθ−1)[sinθ−1+cosθ]=0
either sinθ=1
⇒θ=2nπ+π/2 where
nϵI
or, sinθ+cosθ=1
cos(θ−π/4)=cos(π/4)⇒θ−π/4=2nπ±π/4
⇒θ=2nπ,2nπ+π/2
where nϵI
Hence θ=2nπ,2nπ+π/2