The most general values of θ satisfying tanθ+tan3π4+θ=2 are given by
θ=2nπ±π3,n∈ℤ
θ=nπ±π3,n∈ℤ
θ=2nπ±π6,n∈ℤ
θ=nπ±π6,n∈ℤ
Explanation for the correct option:
Given equation: tanθ+tan3π4+θ=2
By simplifying the given equation, we get
tanθ+tan3π4+θ=2⇒tanθ+tan3π4+tanθ1-tan3π4tanθ=2∵tan(A+B)=tanA+tanB1-tanAtanB⇒tanθ+(-1)+tanθ1-(-1)tanθ=2⇒tanθ+tanθ-11+tanθ=2⇒tanθ1+tanθ+tanθ-11+tanθ=2⇒tanθ1+tanθ+tanθ-1=21+tanθ⇒tanθ+tan2θ+tanθ-1=2+2tanθ⇒tan2θ+2tanθ-1=2+2tanθ⇒tan2θ-1=2⇒tan2θ=3⇒tanθ=±3⇒tanθ=tanπ3ortan2π3⇒θ=nπ±π3,n∈ℤ
Therefore, the most general values of θ satisfying tanθ+tan3π4+θ=2 are given by θ=nπ±π3,n∈ℤ.
Hence, option B is correct .