intiatlly at
t=0,
displacement x=1cm
initial velocity, v=ωcm/sec.
angular frequency, ω=πrad/s−1
its is given that,
x(t)=Acos(wt+ϕ)
1=Acos(wt×0=ϕ)=Acos ϕ
Acos ϕ=1 . . . . . . . . .(1)
now velocity, v=dxdt
ω=−Aωsin(ωt+ϕ)
Asinϕ=−1 . . . . . . . . .(2)
squaring and adding equations (1)and (2) we get,
A2(sin2ϕ+cos2ϕ)=1+1
A2(sin2ϕ+cos2ϕ)1+1
∴A=√2 cm
dividing equation (2) and (1) we get
tanϕ=−1
∴ϕ3π4,7π4,......
SHM is given as :
x=Bsin(wt+α)
putting the given values in this equation, we get:
1=Bsin[ω×0+α]=1+1
Bsinα=1 . . . . . . . . . .(3)
velocity, v=ωBcos(wt+α)
substituting the given values, we get :
B2[sin2α+cos2α]=1=1
Bsinα=1 . . . . . . . . . . .(4)
squaring and adding equation 3 and 4 we get
B2[sin2α+cos2α]=1+1
B=√2 cm
Dividing equation (3) by (4) we get,
BsinαBcosα=11
tanα=1=tanπ4
α=π4,5π4