The motion of a particle is defined by the position vector →r=A(cost+t sint)^i+A(sint−t cost)^j, where t is expressed in seconds.
The position vector and acceleration vector are perpendicular
Step 1: Given that:
The position vector of the particle in motion is given as;
→r=A(cost+tsint)^i+A(sint−tcost)^j
Step 2: Concept and formula used:
The velocity of a body in differential form is given by;
→v=d→rdt
And the acceleration in the body in differential form is given by;
→a=d→vdt
→a=ax^i+ay^j
→b=bx^i+by^j
Then the dot product is defined as,
→a.→b=(ax^i+ay^j).(bx^i+by^j)
→a.→b=axbx+ayby
As, ^i.^i=^j.^j=1,but,^i.^j=^j.^i=0
Thus,
For being perpendicular, the dot product of the position vector and acceleration vector must be perpendicular.
Step 3: Calculation of the acceleration in the particle:
→v=ddt(A(cost+tsint)^i+A(sint−tcost)^j)
→v=ddt(Acost^i+Atsint^i+Asint^j−Atcost^j)
→v=−Asint^i+(Asint^^i+Atcost^i)+Acost^j−(Acost^^j−Atsint^j)
→v=A(−sint+sint+tcost)^i+A(cost−cost+tsint)^j
→v=Atcost^i+Atsint^j
→v=At(cost^i+sint^j)
Now, the acceleration of the particle will be;
→a=ddt→v
→a=At(cost^i+sint^j)
→a=A(tcost^i+tsint^j)
→a=A(cost^i−tsint^i)+A(sint^j+tcost^j)
→a=A(cost−tsint)^i+A(sint+tcost)^j
Step 4: Determining the condition for the position vector and acceleration vector to be perpendicular:
Now,
→r.→a=0
{A(cost+tsint)^i+A(sint−tcost)^j}.{A(cost−tsint)^i+A(sint+tcost)^j}=0
A2(cost+tsint)(cost−tsint)+A2(sint−tcost)(sint+tcost)=0
A2{cos2t−t2sin2t}+A2{sin2t−t2cos2t}=0
A2{cos2t+sin2t−t2(sin2t+cos2t)}=0
A2×(1−t2×1)=0
(∵cos2t+sin2t=sin2t+cos2t=1)
A2(1−t2)=0
Since,
A2≠0,
(1−t2)=0
t2=1
t=1sec
Thus,