The correct option is B 13n(n−1)(n−2)+n
Let nth term of the series is tn and sum is S.
Then, S=1+2+5+12+25+46+⋯+tn
S=0+1+2+5+12+25+⋯+tn−1+tn
On subtracting, we get
0=1+1+3+7+13+21+⋯+(tn−tn−1)−tn
∴tn=1+{1+3+7+13+21+⋯+upto(n−1)}
Let (n−1)th term and sum of the series 1+3+7+13+21+⋯ are tn−1 and S′, respectively. Then,
S′=1+3+7+13+21+⋯+tn−1
S′=0+1+3+7+13+⋯+tn−2+tn−1
On subtracting, we get
0=1+2+4+6+8+⋯+(tn−1−tn−2)−tn−1
∴tn−1=1+2{1+2+3+4+⋯upto(n−2)}
=1+2⋅12(n−2)(n−1)=n2−3n+3
⇒tn=(n+1)2−3(n+1)+3
=n2−n+1
∴tn=1+{1+3+7+13+⋯upto(n−1)}
=1+n−1∑n=1(n2−n+1)
=1+n−1∑n=1n2−n−1∑n=1n+n−1∑n=11
=1+16n(n−1)(2n−1)−12n(n−1)+(n−1)
=13n(n−1)(n−2)+n
Hence, tn=13n(n−1)(n−2)+n