The natural number α, for which n∑k=1f(α+k)=2n(31+n) where the function f satisfies the relation f(x+y)=f(x)+f(y) for all natural numbers x, y and further f(1)=4 is
A
10
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
15
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
16
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
20
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B 15 Given: n∑k=1f(α+k)=2n(31+n),f(x+y)=f(x)+f(y) and f(1)=4 Put n = 1 f(α+1)=2(1)(31+1)=64⇒f(α) and f(1)=64 or f(α)=64−4=60(1) Put n = 2 Putn=1:f(α+2)=2(2)(31+2)=132f(α)+f(1)+f(α)+f(2)=1322f(α)+f(1)+f(2)=1322.60+4+f(2)=132f(2)=8(2) Put n = 3 f(α+3)=2(3)(31+3)=2043f(α)+f(1)+f(2)+f(3)=2043.60+4+8+f(3)=204⇒f(3)=12 f(1)=4;f(2)=8;f(3)=12⇒(3) ⇒f(α)=60=4α ∴α=604=15.