The correct option is
C (-1,1)
The equation of circle is,
x2+y2−6x+4y−12=0
∴(x2−6x)+(y2+4y)−12=0
∴(x2−6x+9)−9+(y2+4y+4)−4−12=0
∴(x−3)2+(y+2)2−25=0
∴(x−3)2+[y−(−2)]2=(5)2
Compare with standard form of equation of circle i.e. (x−h)2+[y−k]2=r2, we get,
h=3, k=−2 and r=5
As shown in figure, coordinates of C are C(3,−2), and AC=5
Let coordinates of point D are (−5,4)
As shown in figure, shortest distance between point D and circle is AD.
Now, AD=CD−AC Equation (1)
By distance formula, CD=√(3−(−5))2+(−2−4)2
∴CD=√(8)2+(−6)2
∴CD=√64+36=√100
∴CD=10
From equation (1),
AD=10−5
∴AD=5
Now, Let coordinates of point A are A(h,k)
CAAD=55=1
∴mn=11
∴m=1 and n=1
Point A is dividing segment CD internally. Thus, by section formula,
h=mx2+nx1m+n
∴h=(1×−5)+(1×3)1+1
∴h=−5+32
∴h=−1
Similarly, k=my2+ny1m+n
∴k=(1×4)+(1×−2)1+1
∴k=4−22
∴k=1
Thus, coordinates of point A are A(−1,1)
Thus, answer is option (B)