The correct option is C three
cos7x+sin4x=1
cos7x+(1−cos2x)2=1
cos7x+1+cos4x−2cos2x=1
cos2x(cos5x+cos2x−2)=0
Thus, cosx=0 or cos5x+cos2x=2
x=−π2,π2, or cos5x+cos2x=2, this is possble when both cos5x=cos2x=1 or x=0
Hence, three values are possible for the given equation