The normal at a point P on the ellipse x2+4y2=16 meets the x-axis at Q. If M is the mid point of the line segment PQ, then locus of M intersects the latus rectums of the given ellipse at the points.
Given Ellipse x216+y24=1
e=√1−b2a2=√32
∵P is a point on the ellipse
So, P=(4cosθ,2sinθ)
Equation of normal to the ellipse x216+y24=1 at point (x1,y1)=(4cosθ,2sinθ) is given by
a2y1(x−x1)=b2x1(y−y1)
⟹16×2sinθ(x−4cosθ)=4×4cosθ(y−2sinθ)
⟹2xsinθ−8sinθcosθ=ycosθ−2sinθcosθ
⟹2xsinθ=ycosθ+6sinθcosθ
⟹2xcosθ=ysinθ+6
⟹2xsecθ−ycosecθ=6
It meet the x-axis at Q(3cosθ,0)
∴M=(72cosθ,sinθ)=(x,y)
Locus of M is
x2(72)2+y21=1