The normal at a point P on the ellipse x2+4y2=16 meets the X - axis at Q. If M is the mid-point of the line segment PQ, then the locus of M intersects the latusrectum of the given ellipse at the points
(±2√3,±17)
Given, x216+y24=1
Here, a = 4, b = 2
Equation of normal
4xsecθ−2ycosecθ=12
M(7cosθ2,sinθ)=(h,k) [say]
∴h=7cosθ2⇒=2h7=cosθ ... (i)
and k=sinθ ...(ii)
On squaring and adding Eqs. (i) and (ii), we get
4h249+k2=1 [∵cos2θ+sin2θ=1]
Hence, locus is 4x249+y2=1 ...(iii)
For given ellipse, e2=1−416=34
∴e=√32
∴x=±4×√32=±2√3[∵x=±ae] ... (iv)
On solving Eqs. (iii) and (iv), we get
449×12+y2=1⇒y2=1−4849=149
y=±17
∴ Required points (±2√3,±17).