The correct option is A e√e2−1
The equation of the normal at P(asecθ,btanθ) to the hyperbola x2a2−y2b2=1 is
axcosθ+bycotθ=a2+b2
This intersects the transverse and conjugate axes at L(a2+b2asecθ,0) and M(0,a2+b2btanθ) respectively
Let N(h,k) is midpoint of LM
then h=a2+b22asecθ and k=a2+b22btanθ
⇒secθ=2aha2+b2,tanθ=2bka2+b2
∴sec2θ−tan2θ=1⇒4a2h2−4b2k2=(a2+b2)2
Thus the locus of (h,k) is ⇒4a2x2−4b2y2=(a2+b2)2
Let e1 be the eccentricity of this hyperbola. Then
e12=1+a2b2=a2+b2b2=a2e2a2(e2−1)
⇒e1=e√e2−1
Hence, option 'B' is correct.