The correct option is D PF⋅PH=CA2
Given : x29−y21=1
C=(0,0), A=(3,0), B=(0,1)
Let P=(3secθ,tanθ)
Equation of normal in parametric form is
axsecθ+bytanθ=a2+b2⇒3xcosθ+ycotθ=10
∴G≡(10secθ3,0),H≡(0,10tanθ)
PG=√sec2θ9+tan2θ⇒PG=√1+9sin2θ3|cosθ|PH=√9sec2θ+81tan2θ⇒PH=3√1+9sin2θ|cosθ|
Now, the equation of CF is
xcotθ−3ycosθ=0
Distance from P
PF=∣∣∣3sinθ−3sinθ∣∣∣√cot2θ+9cos2θ⇒PF=3cos2θ√cos2θ+9sin2θcos2θ⇒PF=3|cosθ|√1+9sin2θPF⋅PG=1=CB2PF⋅PH=9=CA2
Let the midpoint of G and H be Q(h,k), then
(h,k)=(5secθ3,5tanθ)sec2θ−tan2θ=1⇒(3h5)2−(k5)2=1
Therefore, the required locus is
x2259−y225=1
This is a hyperbola, whose eccentricity
=
⎷1+25259=√10