The correct option is B y=0
The equation of any normal to the parabola y2=4ax is y=mx−2am−am3
If it passes through (h,k) then k==mh−2am−am3
⇒am3+(2a−h)m+k=0
This is a cubic in m. Let its roots be m1,m2,m3
Then, m1+m2+m3=0;m1m2+m2m3+m3m1=2a−ha ...(1)
Co-ordinates of P,Q,R, the feet of the three normals are
(am12−2am1);(am22−2am2);(am32−2am3) respectively
Let G≡(¯¯¯x,¯¯¯y) be the centroid of △PQR
Then ¯¯¯x=am12+am22+am323=a3(m12+m22+m32)
=a3[(0)2−2(2a−ha)]=23(h−2a)
¯¯¯y=(−2am1)+(−2am2)+(−2am3)3=−2a3(m1+m2+m3)=0
⇒centroid of △PQR is G≡[23(h−2a),0] which lies on y=0