The correct option is C It is at a constant distance from the origin
y=a(sinθ−θcosθ),x=a(cosθ+θsinθ)
dydθ=a[cosθ−cosθ+θsinθ]=aθsinθdxdθ=a(−sinθ+sinθ+θcosθ)=aθcosθ∴dydx=dydθdxdθ=aθsinθaθcosθ=tanθ
⇒ Slope of the tangent = tanθ
∴ Slope of the normal =−cotθ
Hence, equation of normal
[y−asinθ+aθcosθ]=−cosθsinθ[x−acosθ−aθsinθ]⇒ysinθ−asin2θ+aθsinθcosθ=−xcosθ+acos2θ+aθsinθcosθ⇒xcosθ+ysinθ=a(sin2θ+cos2θ)⇒xcosθ+ysinθ=a
∴ Distance from origin =a√sin2θ+cos2θ=a= constant