Given ,
5x2−10x3+x+2y+6=0
Differentiate both side we get
25x4−30x2+1+2dydx=0
−2dydx=25x4−30x2+1
−dydx=252x4−15x2+12
Given point, (0,-3)
(dydx)(0,−3)=−12
Now equation of tangent
∵y−y1=dydx(x−x1)
∵y+3=−12(x−0)
y=−x2−3 …..(1)
Equation of normal
∵y−y1=1−dydx(x−x1)
y+3=112(x−0)
y+3=2x
y=2x−3 ……(2)
By solving equation (1) and (2) , we get
X=0 ,y = - 3
These are required point