Given parabola is y2=8x (a=2)
⇒ Any point on the parabola will be in the form of (2t2,4t)
Let P(2,4)=(2t21,4t1)⇒t1=1
Let normal at P meets the parabola at Q(2t22,4t2).
∴t2=−t1−2t1=−1−2=−3
⇒Q(2t22,4t2)=Q(18,−12)≡Q(l,m)
Let normal at Q meets the parabola at R(2t23,4t3).
∴t3=−t2−2t2=3+23=113
⇒R(2t23,4t3)=R(2429,443)≡R(α,β)
∴9α+6β+l9+m6=242+88+2−2=330