The nth term (general term) of an arithmetic progression, a1, a2, a3, …, an, … where a2 –a1 = a3 – a2 = …. = d is:
an = a1 – (n – 1)d
an = an-1 – (n – 1)d
an = a1 + (n – 1)d
an = an-1 + (n-1)d
If a1,a2,a3,…,an are in arithmetic progression, where a1>0 for all i. Prove that 1√a1+√a2+1√a2+√a3+…+1√an−1+√an=n−1√a1+√an
If A1, A2, A3,..., An are n numbers between a and b, such that a, A1, A2, A3,..., An, b are in A.P., then