The correct option is B 1
a1+a2sinx+a3cosx+a4sin2x+a5cos2x=0
For x=0, we get
a1+a3+a5=0 ...(1)
For x=π, we get
a1−a3+a5=0 ...(2)
For x=π2, we get
a1+a2−a5=0 ...(3)
For x=3π2, we get
a1−a2−a5=0 ...(4)
Solving (1),(2),(3) and (4), we get
a1=0,a2=0,a3=0,a5=0
For x=π4, we get
a1+a2√2+a3√2+a4=0a4=0
Hence only zero is the only possible value