The number of all possible triplets (a1,a2,a3) such that a1+a2cos(2x)+a3sin2(x)=0 for all x is
Zero
One
Three
Infinite
a1+a2cos(2x)+a3sin2(x)=0
a1+a2(1-2sin2x)+a3=0a1+a2+a3–2a2sin2x=0a1+a2+a3=2a2sin2xSin2x=(a1+a2+a3)2a2
For all values ofx, there exists an infinite number of points between the interval 0≤sin2x≤1.
Thus, the number of triplets is infinite.
Hence, option D is correct.
The number of all the possible triplets (a1,a2,a3) such that a1+a2cos(2x)+a3sin2(x)=0 for all x is