The number of all possible triplets (a1,a2,a3) such that a1+a2cos2x+a3sin2x=0 for all x is
Given- a1+a2cos2x+a3sin2.x=0.
To find out- the number of the triplets (a1,a2,a3) which will make the given mathematical sentence true.
Solution- a1+a2cos2x+a3sin2.x=0
⇒a1+a2(1−2sin2x)+a3=0
⇒a1+a2+a3−2a2sin2x=0
⇒2a2sin2x=a1+a2+a3
⇒sin2x=a1+a2+a32a2 ..........(i)
Now for all values of x0≤sin2x≤1 and there are infinite number of points in between this interval. So the number of possible triplets (a1,a2,a3) satisfying (i) is infinite.
Ans- Option D.