The number of all possible values of θ,where0<θ<π, for which the system of equations (y+z)cos3θ=(xyz)sin3θ
xsin3θ=2cos3θy+2sin3θz(xyz)sin3θ=(y+2z)cos3θ+ysin3θ
have a solution (x0,y0,z0)withy0z0≠0 is
Let xyz =t
tsin3θ−ycos3θ−zcos3θ=0(1)
tsin3θ−2ysin3θ−2zcos3θ=0(2)
tsin3θ−y(cos3θ+sin3θ)−2zcos3θ=0(3)
y0.z0≠0 hence homegoeneous equation has non -trivial solution.
∴D=∣∣
∣∣sin3θ−cos3θ−cos3θsin3θ−2sin3θ−2cos3θsin3θ−(cos3θ+sin3θ)−2cos3θ∣∣
∣∣=0
⇒sin3θcos3θ(sin3θ−cos3θ)=0
If sin3θ=0, then from equation (2)
z =0, which is not possible
If cos3θ=0 and sin3θ≠0, then
t.sin3θ=0
⇒t=0
⇒x=0
From equation (2), y=0 which is not possible
If sin3θ−cos3θ=0, then
tan3θ=1
⇒3θ=nπ+π4,n∈I
⇒x.y.zsin3θ≠0
⇒θ=π12,5π12,9π12
Hence, three solutions.