The correct option is D infinite
a1+a2cos(2x)+a3sin2(x)=0⇒a1+a2cos(2x)+a3(1−cos2x2)=0⇒(a1+a32)+(a2−a32)cos2x=0
The above equation is valid for all x∈R, so
a1+a32=0 and a2−a32=0⇒a3=−2a1, a2=−a1
Hence, infinite number of triplets of (a1,−a1,−2a1) is possible.
Alternate Solution:
Since the given equation is possible for all x∈R, so
Putting x=0, we get
a1+a2=0⋯(1)
Putting x=π4, we get
a1+a32=0⋯(2)
From (1) and (2), we get
a2=−a1, a3=−2a1
Hence, infinite triplets are possible.